

# **Smart Tool Setup Procedure**

# **Calibration and Commission**

# Step 1

Make all necessary connections for Vin, GND, and I/O. All inputs into the tool are sinking and need to be a 24V HIGH and a 0V LOW. All outputs leaving the tool are sourcing and will be 24V signals. Calibration and Run Degauss inputs should be low other than when they are in use.

#### Table 1: Connector I/O Functionality

| Pin # | Function                               | Logic                                        | Direction |
|-------|----------------------------------------|----------------------------------------------|-----------|
| 1     | Vin                                    |                                              | 24VDC     |
| 2     | GND                                    |                                              | GND       |
| 3     | Calibrate                              | Requires 1 second high to enter              | Input     |
| 4     | Run Degauss (when enabled)             | Requires 20ms high to begin-when enabled     | Input     |
| 5     | Calibration Bit 1                      |                                              | Input     |
| 6     | Calibration Bit 2                      |                                              | Input     |
| 7     | Magnet On                              | High when magnet is on                       | Output    |
| 8     | Magnet Off                             | High when magnet is off                      | Output    |
| 9     | Calibrated Part Present                | High when within calibrated range            | Output    |
| 10    | Degauss Cycle Running (when enabled)   | High while Degauss is running - when enabled | Output    |
| 11    | North Pole (disabled for MJxxAY tools) | High when within calibrated range            | Output    |
| 12    | South Pole (disabled for MJxxAY tools) | High when within calibrated range            | Output    |

Table 2: Calibration I/O Functionality – output signals are not active on degauss tools

| Pin # | Function                        | Logic                                       | Direction |
|-------|---------------------------------|---------------------------------------------|-----------|
| 1     | Vin                             | -                                           | 24VDC     |
| 2     | GND                             | -                                           | GND       |
| 3     | Calibrate                       | Requires 1 second high to enter             | Input     |
| 4     | Exit Calibration                | Goes back to sensing, does not store values | Input     |
| 5     | N/A                             | -                                           | Input     |
| 6     | N/A                             | -                                           | Input     |
| 7     | Waiting for Limiting Position 1 | High when true                              | Output    |
| 8     | Limiting Position 1 Saved/      | High when true                              | Output    |
|       | Waiting for Limiting Position 2 |                                             |           |
| 9     | N/A                             | -                                           | Output    |
| 10    | In Calibration                  | High while in calibration                   | Output    |
| 11    | Sout Pole Position Saved/       | High when true                              | Output    |
|       | Waiting for North Pole Position | (disabled for MJxxAY tools)                 |           |
| 12    | Limiting Position 2 Saved/      | High when true                              | Output    |
|       | Waiting for South Pole Position | (disabled for MJxxAY tools)                 |           |





Cable Side: Pin Assignment M12, 12-pos, Female Side View



Tool side: Pin Assignment of M12 Male Connector, 12-pos., A-coded view of the pin side



Calibrated Part Present signal will be HIGH (24V) when the contact quality is between Limiting Position 1 and Limiting Position 2. Minimums and maximums from the two limiting positions will be stored to incorporate the proper range for the Calibrated Part Present signal. In this document, you will calibrate for 4 positions.

South Pole Signal will be HIGH (24V) when the South Pole position is in equal to or better contact than the stored South Pole Position.

North Pole Signal will be HIGH (24V) when the South Pole Position is in equal to or better contact than the stored North Pole Position.



Figure 2: Step 1-4 Calibration Positions



### **LED Color Codes**

#### Table 3: On-Tool LED Color Codes

| LED #                   | LED Color | Status   | Function                  |
|-------------------------|-----------|----------|---------------------------|
| LED 1 (Power, Blue LED) | Blue      | Off      | No power to tool          |
|                         |           | Solid    | Power to tool             |
|                         |           | Flashing | Calibration was triggered |
| LED 2 (State, RG LED)   | Red       | Solid    | Magnet OFF                |
|                         | Green     | Solid    | Magnet ON                 |
|                         | Amber     | Solid    | Degauss is Running        |

#### **Table 4: Calibration Truth Table**

| Calibration Bit 1 | Calibration Bit 2 | Calibration # |
|-------------------|-------------------|---------------|
| LOW               | LOW               | Calibration 1 |
| HIGH              | LOW               | Calibration 2 |
| LOW               | HIGH              | Calibration 3 |
| HIGH              | HIGH              | Calibration 4 |



Figure 3: Tool Orientation for Magswitch J30 NOTE: Air ports are on the NORTH POLE side of the tool



## Step 2

Turn the power supply on. Power LED 1 (blue) will be illuminated followed by the Magnet LED 2 (red or green) 1 second later. Please refer to *Figure 4* for an example. Please note that if the "A" air port has been energized before powering on the tool that LED 2 will be green. Otherwise, LED 2 will be red.



Figure 4: Magswitch J30 Startup Sequence – Power LED 1 (blue) and Magnet LED 2 (red) illuminated when complete

# Step 3

Make sure both calibration bits are LOW (0V) to store the initial calibration in Calibration 1.

## Step 4

Toggle the calibration input (Pin 3) HIGH (24V) for 1 second then back to LOW (0V) to enter calibration. Now the user is in calibration mode.

- a. Wait for the power LED 1 to stop flashing. (3 Flashes)
- b. The software will not move onto the next step until the input (Pin 3) goes back to LOW (0V).

# **Omagswitch**<sup>®</sup>

MAGSWITCH Smart Tool Setup Procedure + 1(303) 468.0622 magswitch.com.au

# Step 5

#### **To calibrate Limiting Position 1:**

- a. Place the unit on the target part at one end of its limiting range for the Calibrated Part Present signal and pneumatically actuate the magnet to the on position. Some recommended positions are provided below.
  - i. The maximum steel in vicinity (for complex or bin picking shapes)
  - ii. The best contact
  - iii. The least air gap
  - iv. The maximum for one pole, but minimum for the other
- b. Please refer to **Figure 5** for an example.

NOTE: The unit is centered on the part with little to no air gap between the pole shoes and part.

## Step 6

**To store Limiting Position 1:** Toggle the calibration input (Pin 3) HIGH (24V) then back to LOW (0V).

- a. The software will not move onto the next step until the input (Pin 3) goes back to a LOW (0V).
- b. The power LED 1 will flash when the Limiting Position 1 data has been evaluated.
- c. Once the power LED 1 stops flashing (3 flashes), pneumatically de-actuate the magnet.

## Step 7

#### **To calibrate Limiting Position 2:**

- a. Place the unit on the target part at the other end of its limiting range for the Calibrated Part Present signal and pneumatically actuate the magnet to the on position. Some recommended positions are provided below.
  - i. The minimum steel in vicinity (for complex or bin picking shapes)
  - ii. The worst contact.
  - iii. The maximum allowable air gap (coatings)
  - iv. The minimum for one pole, but the maximum for the other
- b. Please refer to *Figure 6* for an example.

NOTE: The unit is centered on the part but an air gap of 0.2mm approximately equal to 2 layers of standard copy paper is added between the pole shoes and part. Artificial air gaps can be used to simulate scale, paint, or debris on a part but it is preferable to use the authentic "worst-case" allowable part condition rather than nonferrous shims.



Figure 6: Example of Limiting Position 2 for Calibrated Part Present Signal



Figure 5: Example of Limiting Position 1 for Calibrated Part Present Signal



## Step 8

To store Limiting Position 2: Toggle the calibration input HIGH (24V) then back to LOW (0V).

- a. The software will not move onto the next step until the input goes back to a LOW (0V).
- b. The power LED 1 will flash when the Limiting Position 2 data has been evaluated.
- c. Once the power LED 1 stops flashing (3 flashes), pneumatically de-actuate the magnet.

# Step 9

**To calibrate South Pole Position:** Place the unit so that the South Pole is in its desired position for the South Pole Signal and pneumatically actuate magnet on. Please refer to *Figure 7* for an example.

# Step 10

**To store South Pole Position:** Toggle the calibration input HIGH (24V) then back to LOW (0V).

- a. The software will not move onto the next step until the input goes back to a LOW (0V).
- b. The power LED 1 will flash when the South Pole data has been evaluated.
- c. Once the power LED 1 stops flashing, pneumatically de-actuate the magnet.

# Step 11

**To calibrate North Pole Position:** Place the unit so that the North Pole is in its desired position for the North Pole Signal and pneumatically actuate the magnet on. Please refer to *Figure 8* for an example.

# Step 12

**To store North Pole Position:** Toggle the calibration input HIGH (24V) then back to LOW (0V).

- a. The software will not move onto the next step until the input goes back to a LOW (0V).
- b. The power LED 1 will flash when the North Pole data has been evaluated.
- c. Leave the unit in its North Pole Signal position with the magnet pneumatically actuated in the on position. This will make testing calibration faster.



Figure 7: Example of South Pole Signal Position



Figure 8: Example of North Pole Signal Position



# Step 13

Once the power LED 1 stops flashing, the unit will go back into sensing mode.

a. At this point in time, the state outputs should be functioning properly.

# Step 14

To add calibrations 2-4, repeat steps 4-13 with the proper Calibration Bit setting.

- a. Calibration 1:
  - i. Calibration Bit 1: LOW (0V)
  - ii. Calibration Bit 2: LOW (0V)
- b. Calibration 2:
  - i. Calibration Bit 1: HIGH (24V)
  - ii. Calibration Bit 2: LOW (0V)
- c. Calibration 3:
  - i. Calibration Bit 1: LOW (0V)
  - ii. Calibration Bit 2: HIGH (24V)
- d. Calibration 4:
  - i. Calibration Bit 1: HIGH (24V)
  - ii. Calibration Bit 2: HIGH (24V)

NOTE: To use the different calibrations, set the Calibration Bit signals as shown above before entering calibration mode.



# **Testing Calibration**

If the North Pole Signal and/or North Pole Signal Position are less than the minimum of the Calibrated Part Present signal range (this is the case for the calibration shown in this document):

- 1. Magnet is pneumatically de-actuated:
  - a. Tool On Signal: LOW (0V)
  - b. Tool Off Signal: HIGH (24V)
  - c. South Pole Signal: LOW (0V)
  - d. North Pole Signal: LOW (0V)
  - e. Calibrated Part Present Signal: LOW (0V)
- 2. Unit positioned within Calibrated Part Present signal range and the magnet is pneumatically actuated on:
  - a. Tool On Signal: HIGH (24V)
  - b. Tool Off Signal: LOW (0V)
  - c. South Pole Signal: HIGH (24V)
  - d. North Pole Signal: HIGH (24V)
  - e. Calibrated Part Present Signal: HIGH (24V)
- 3. Unit positioned with South Pole outside of Calibrated Part Present signal range and the magnet is pneumatically actuated on:
  - a. Tool On Signal: HIGH (24V)
  - b. Tool Off Signal: LOW (0V)
  - c. South Pole Signal: LOW (0V)
  - d. North Pole Signal: HIGH (24V)
  - e. Calibrated Part Present Signal: LOW (0V)
- 4. Unit positioned with North Pole outside of Calibrated Part Present signal range and the magnet is pneumatically actuated on:
  - a. Tool On Signal: HIGH (24V)
  - b. Tool Off Signal: LOW (0V)
  - c. South Pole Signal: HIGH (24V)
  - d. North Pole Signal: LOW (0V)
  - e. Calibrated Part Present Signal: LOW (0V)
- 5. Unit positioned with North/South Poles within South/North Pole Signal range, but not within Calibrated Part Present signal range:
  - a. Tool On Signal: HIGH (24V)
  - b. Tool Off Signal: LOW (0V)
  - c. South Pole Signal: HIGH (24V)
  - d. North Pole Signal: HIGH (24V)
  - e. Calibrated Part Present Signal: LOW (0V)
- 6. Unit positioned with neither pole within the Calibrated Part Present signal nor South/North Pole Signal range and the magnet is pneumatically actuated on:
  - a. Tool On Signal: HIGH (24V)



# **Testing Calibration**

If the South Pole Signal and North Pole Signal Position are equal to the minimum of the Calibrated Part Present signal range:

- 1. Magnet is pneumatically de-actuated:
  - a. Tool On Signal: LOW (0V)
  - b. Tool Off Signal: HIGH (24V)
  - c. South Pole Signal: LOW (0V)
  - d. North Pole Signal: LOW (0V)
  - e. Calibrated Part Present Signal: LOW (0V)
- 2. Unit positioned within Calibrated Part Present signal range and the magnet is pneumatically actuated on:
  - a. Tool On Signal: HIGH (24V)
  - b. Tool Off Signal: LOW (0V)
  - c. South Pole Signal: HIGH (24V)
  - d. North Pole Signal: HIGH (24V)
  - e. Calibrated Part Present Signal: HIGH (24V)
- 3. Unit positioned with South Pole outside of Calibrated Part Present signal range and the magnet is pneumatically actuated on:
  - a. Tool On Signal: HIGH (24V)
  - b. Tool Off Signal: LOW (0V)
  - c. South Pole Signal: LOW (0V)
  - d. North Pole Signal: HIGH (24V)
  - e. Calibrated Part Present Signal: LOW (0V)
- 4. Unit positioned with North Pole outside of Calibrated Part Present signal range and the magnet is pneumatically actuated on:
  - a. Tool On Signal: HIGH (24V)
  - b. Tool Off Signal: LOW (0V)
  - c. South Pole Signal: HIGH (24V)
  - d. North Pole Signal: LOW (0V)
  - e. Calibrated Part Present Signal: LOW (0V)
- 5. Unit position with neither pole within the Calibrated Part Present signal range and the magnet is pneumatically actuated on:
  - a. Tool On Signal: HIGH (24V)
  - b. Tool Off Signal: LOW (0V)
  - c. South Pole Signal: LOW (0V)
  - d. North Pole Signal: LOW (0V)
  - e. Calibrated Part Present Signal: LOW (0V)



# **Troubleshooting**

## Lost in Calibration

If you are stuck and/or lost in the calibration procedure, turn off the power going to the unit. Make sure that the power LED is no longer illuminated then turn the power to the unit back on. When the unit turns back on, it will be back in the normal standby mode. At this point, start the calibration procedure from step 2.

While in calibration mode, raising pin 4 voltage HIGH (24V) will also return the tool to standby mode without saving.

At each calibration step the Power (Blue) LED light will flash 3 times. After each calibration trigger, the light will flash 3 times when the data is stored.

# **Tool Does Not Enter Degauss Cycle**

For degauss to be successful the magnet MUST be off (pneumatically de-actuated). If the magnet is pneumatically actuated in the on position, then the degauss cycle will not run. Make sure that the magnet is pneumatically de-actuated before running the degauss cycle on the part. When the tool is off and degauss is run properly, LED 2 will sustain an amber color until the cycle is finished. If degauss is NOT enabled, toggling the degauss input will not do anything.



#### **J-Series Operational Flowchart**

